首页> 外文OA文献 >Global-Local Nonlinear Model Reduction for Flows in Heterogeneous Porous Media
【2h】

Global-Local Nonlinear Model Reduction for Flows in Heterogeneous Porous Media

机译:非均质多孔介质中流动的全局局部非线性模型   媒体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we combine discrete empirical interpolation techniques, globalmode decomposition methods, and local multiscale methods, such as theGeneralized Multiscale Finite Element Method (GMsFEM), to reduce thecomputational complexity associated with nonlinear flows inhighly-heterogeneous porous media. To solve the nonlinear governing equations,we employ the GMsFEM to represent the solution on a coarse grid with multiscalebasis functions and apply proper orthogonal decomposition on a coarse grid.Computing the GMsFEM solution involves calculating the residual and theJacobian on the fine grid. As such, we use local and global empiricalinterpolation concepts to circumvent performing these computations on the finegrid. The resulting reduced-order approach enables a significant reduction inthe flow problem size while accurately capturing the behavior of fully-resolvedsolutions. We consider several numerical examples of nonlinear multiscalepartial differential equations that are numerically integrated usingfully-implicit time marching schemes to demonstrate the capability of theproposed model reduction approach to speed up simulations of nonlinear flows inhigh-contrast porous media.
机译:在本文中,我们结合了离散经验插值技术,全局模式分解方法和局部多尺度方法,例如通用多尺度有限元方法(GMsFEM),以降低与高非均质多孔介质中非线性流动相关的计算复杂性。为了求解非线性控制方程,我们使用GMsFEM表示具有多尺度基函数的粗糙网格上的解,并在粗糙网格上进行适当的正交分解。计算GMsFEM解涉及在精细网格上计算残差和雅可比。因此,我们使用局部和全局经验插值概念来规避在细网格上执行这些计算。最终的降序方法可以显着减小流问题的大小,同时准确地捕获完全解析的解决方案的行为。我们考虑了几个非线性多尺度偏微分方程的数值例子,这些例子使用完全隐式时间行进方案进行了数值积分,以证明所提出的模型简化方法能够加快高对比度多孔介质中非线性流动的模拟速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号